Vertex Cover Kernelization Revisited: Upper and Lower Bounds for a Refined Parameter

نویسندگان

  • Bart M. P. Jansen
  • Hans L. Bodlaender
چکیده

Kernelization is a concept that enables the formal mathematical analysis of data reduction through the framework of parameterized complexity. Intensive research into the Vertex Cover problem has shown that there is a preprocessing algorithm which given an instance (G, k) of Vertex Cover outputs an equivalent instance (G′, k′) in polynomial time with the guarantee that G′ has at most 2k′ vertices (and thus O((k′)2) edges) with k′ ≤ k. Using the terminology of parameterized complexity we say that k-Vertex Cover has a kernel with 2k vertices. There is complexity-theoretic evidence that both 2k vertices and Θ(k2) edges are optimal for the kernel size. In this paper we consider the Vertex Cover problem with a different parameter, the size fvs(G) of a minimum feedback vertex set for G. This refined parameter is structurally smaller than the parameter k associated to the vertex covering number vc(G) since fvs(G) ≤ vc(G) and the difference can be arbitrarily large. We give a kernel for Vertex Cover with a number of vertices that is cubic in fvs(G): an instance (G,X, k) of Vertex Cover, where X is a feedback vertex set for G, can be transformed in polynomial time into an equivalent instance (G′, X ′, k′) such that k′ ≤ k, |X ′| ≤ |X| and most importantly |V (G′)| ≤ 2k and |V (G′)| ∈ O(|X ′|3). A similar result holds when the feedback vertex set X is not given along with the input. In sharp contrast we show that the Weighted Vertex Cover problem does not have a polynomial kernel when parameterized by fvs(G) unless the polynomial hierarchy collapses to the third level (PH = Σp3). Our work is one of the first examples of research in kernelization using a non-standard parameter, and shows that this approach can yield interesting computational insights. To obtain our results we make extensive use of the combinatorial structure of independent sets in forests. 1998 ACM Subject Classification F.2.2

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cross-Composition: A New Technique for Kernelization Lower Bounds

We introduce a new technique for proving kernelization lower bounds, called cross-composition. A classical problem L cross-composes into a parameterized problem Q if an instance of Q with polynomially bounded parameter value can express the logical OR of a sequence of instances of L. Building on work by Bodlaender et al. (ICALP 2008) and using a result by Fortnow and Santhanam (STOC 2008) we sh...

متن کامل

Tight Kernel Bounds for Problems on Graphs with Small Degeneracy

Kernelization is a strong and widely-applied technique in parameterized complexity. In a nutshell, a kernelization algorithm for a parameterized problem transforms a given instance of the problem into an equivalent instance whose size depends solely on the parameter. Recent years have seen major advances in the study of both upper and lower bound techniques for kernelization, and by now this ar...

متن کامل

Kernelization Lower Bounds By Cross-Composition

We introduce the cross-composition framework for proving kernelization lower bounds. A classical problem L and/or-cross-composes into a parameterized problem Q if it is possible to efficiently construct an instance of Q with polynomially bounded parameter value that expresses the logical and or or of a sequence of instances of L. Building on work by Bodlaender et al. (ICALP 2008) and using a re...

متن کامل

Kernel Bounds for Path and Cycle Problems

Connectivity problems like k-Path and k-Disjoint Paths relate to many important milestones in parameterized complexity, namely the Graph Minors Project, color coding, and the recent development of techniques for obtaining kernelization lower bounds. This work explores the existence of polynomial kernels for various path and cycle problems, by considering nonstandard parameterizations. We show p...

متن کامل

Parametric Duality and Kernelization: Lower Bounds and Upper Bounds on Kernel Size

Determining whether a parameterized problem is kernelizable and has a small kernel size has recently become one of the most interesting topics of research in the area of parameterized complexity and algorithms. Theoretically, it has been proved that a parameterized problem is kernelizable if and only if it is fixed-parameter tractable. Practically, applying a data reduction algorithm to reduce ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011